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Abstract

The dynamics of systems of moving particles in engineering applications is rapidly gaining interest as the
incentive to control and optimize granular flow systems increases. Increasing availability of computing
power has rendered the in silico study of large assemblies of discrete particles in near-realistic systems
feasible. Generally, the governing equations for systems of non-adhesive discrete particles are derived from
Newton’s equation of motion with the basic assumption that the normal and tangential forces arising
between two impacting particles can be independently derived from the virtual overlap of the particles and
the tangential displacement of the initial contact points. In this study, the problem is placed in a rigorous
multibody dynamics setting and a detailed comparison is made with the classical theory. An attempt has
been made to treat particles and walls in a unified way.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Multibody dynamics is an integrated approach to describe and predict the motion of complex
multibody systems as a reaction to internal or external forces acting on the system. Multibody
dynamics has been thoroughly elaborated and all kinds of mechanisms have been described using
this theory [1]. Discrete element method (DEM) simulations however have always used the
Newton–Euler method to describe the motion of the particles involved. This is explained by the
fact that until now most simulations used very simple geometric forms (circles, ellipses, or
polygons) and were carried out in two dimensions. Recently, DEM modellers started to simulate
the behaviour of more complex forms in three dimensions [2,3]. Of course, DE particles will never
be connected to each other in the sense of a multibody system, therefore the full range of
possibilities of multibody dynamics cannot be used in DEM. In this paper multibody dynamics
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will be used to describe the interactions between colliding particles and to derive the equations of
motion of the particles. A comparison is made with the Newton–Euler method. Further, an
attempt has been made to describe a particle–wall interaction and to calculate the equations of
motion for this case using exactly the same method.

2. Equations of motion in multibody dynamics

The equations of motion can be derived using the Newton–Euler method. However in
multibody dynamics the use of Lagrange’s equation combined with the principle of virtual work is
a more common method [4]:

d

dt

@T

@’q

� �
�

@T

@q
¼ f; ð1Þ

One can think of Lagrange’s equation as a ‘balance of motional forces’. On the left side the
‘outputs’, the effects on the motion, on the right side the ‘inputs’, the forces f that have established
this effect. In this equation T is the kinetic energy of the system and q stands for the ‘generalized

co-ordinate’ vector, consisting of the directions along which motion of the system is possible,
considering all its constraints. Using this generalized co-ordinate, the virtual work for internal and
external forces can be calculated.
External forces are not influenced by the motion of the multibody system. Internal forces, on

the contrary, arise from the interactions between the parts of the multibody system; the magnitude
of their force vector is unknown in advance and is calculated as

F ¼ kjjljj þ cjj’ljj þ f : ð2Þ

The length of the connecting vector between the two bodies is represented by jjljj; k and c are
spring and damper constants and f is the magnitude of an actuator force, which is not present in
the DEM. In most DE models, gravity is the only external force. Particle interactions, with
another particle as well as with a boundary, can be seen as internal forces: their magnitude
depends on the interaction itself. This means they are an essential part of the dynamics of a two-
particle system.

2.1. Frames of references

Multibody dynamics uses a distinct reference frame for each separately moving part of a body.
In this paper four different frames of reference will be used: Q0; the inertial frame, Q1 and Q2; the
frames fixed to their respective particles, with their centres located at the centre of mass of
the respective particles. And finally Q3; the collision reference—a frame, with its centre located at
the centre of mass of particle 1 and its unit vector 3ex always pointing to the centre of mass of
particle 2 (Fig. 1). All reference frames are Cartesian and right handed; all unit vectors have the
same length.
Now a vector v can be expressed in a reference frame Qi as

iv: To find the algebraic notation of
these vectors in another reference frame Qj a transformation matrix jAi is used:

jv ¼ jAi
iv: Taking

all this information into account Lagrange’s two-dimensional equation for particle 1 in
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interaction with particle 2 can be written as [5]

m1 0 0
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�m1g

0
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75� 0L1

3Fi; ð3Þ

where x and y are the translational and a the rotational degrees of freedom. m1 and I1 are the mass
and inertia of particle 1 and g is the gravitational acceleration. Notice that the force effect 0L1 is
given in the inertial reference frame and the force itself 3Fi in the reference frame of the
interaction.

2.2. Description of the contact-vector

Just like in multibody dynamics a connecting vector is used to calculate internal forces. There is,
however, an important difference: because in DEM the normal and tangential force models need
not be equal, this vector’s length will not be used to derive a total interaction force, but its normal
and tangential components to derive the normal and tangential interaction forces. In fact, the
following equations are valid (when supposing a simple spring–damper model in the normal
direction and a simple spring model in the tangential direction, where the magnitude of the
tangential force is limited by a sliding element, more complex force models can easily be
implemented):

3Fx ¼ kx
3lx þ nx

3 ’lx;
3Fy ¼ ky

3ly: ð4Þ
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Fig. 1. The particle–particle interaction.
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The contact-vector l connects the ‘virtual initial contact point’ on particle 2 with that on particle
1 in a two-particle system (Fig. 2). These points are the first to establish contact between the two
particles. Due to the allowed ‘overlap’ in the DEM their positions become virtual.
Using this contact-vector allows one to calculate normal and tangential forces as well as their

effects on the motion of the particles involved from one single vector and its derivatives!
Computations can be done on a more abstract level, giving fewer opportunities for errors to
occur. Errors that do occur will have an effect on the whole system’s dynamics at once and will
not remain unnoticed. The contact-vector can be found as

l ¼ �s24 � r2 þ r1 þ s14: ð5Þ

Using the transformation of reference frames the contact vector can be written as
0l ¼ �0A2

2s24 � ð0r2 � 0r1Þ þ 0A1
1s14: ð6Þ

This can clearly be seen in Fig. 2.
Using this contact-vector as well as its time derivative projected in the interaction reference

frame allows one to determine the normal and tangential forces in this reference frame.
Expressing the virtual displacement of the contact-vector—a displacement, which is possible

given the constraints of the system—in terms of the generalised co-ordinates shows that 0L1 is the
motional effect of this force:

0L1 ¼

cos y�
RSIN

d12
sin y �

RCOS

d12
sin y

sin yþ
RSIN

d12
cos y

RCOS

d12
cos y

R1 sin b1 R1 cos b1

2
666664

3
777775; ð7Þ

where
RSIN ¼ R1 sin b1 þ R2 sin b2; ð8Þ

RCOS ¼ R1 cos b1 þ R2 cos b2 ð9Þ

and
d12 ¼ jxj � xij: ð10Þ
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Fig. 2. The contact-vector, l:
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The RSIN and RCOS terms describe the effects of the displacements of the particles’ centres of
mass on the interaction frame. Their individual effect, however, is not fully understood.
Understanding this effect requires a lot of spatial insight. Notice that 0L1 gives the effect on the
particle motion directly in the inertial reference frame. In the calculations of 0L1 it can clearly be
seen that a rotation from the inertial frame to the interaction frame must be incorporated. In a
simple case like this the force’s effects are obvious and the Newton–Euler method may be a lot
faster and easier. However in more complex situations this method requires lots of spatial insights
and a very attentive working style, while calculating 0L1 remains a straightforward, simple work.
At this point Lagrange’s equation (1) can be filled in with the contact-vector and its derivatives

to calculate the equations of motion. This can be done by a computer.

3. Comparison with the Newton–Euler approach

To check these theoretical results they have been compared with the corresponding variables
used in Refs. [6,7]. First of all the overlap has been defined as

D12 ¼ ðr2 þ r1Þ � jx2 � x1jX0 ð11Þ

and the relative velocity of particle j with respect to particle i at the point of contact will be
calculated as

d ’x12 ¼ ’x2 � ’x1 � ð’a2R2 þ ’a1R1Þ#s12; ð12Þ

where #n12 is the normal and #s12 the tangential unit vector. This formula refers to the situation
depicted in Fig. 3. Notice the difference with Fig. 1, where the effect of the overlap and the virtual
tangential displacement are also taken into account. The normal force can now be calculated as

Fn12 ¼ ð�knD12 þ nnd ’x12 � #nÞ#n: ð13Þ

To find the tangential force the virtual tangential displacement must be calculated first:

ds12ðtÞ ¼
Z t

t0

ðd ’x12 � #s12Þ dt0: ð14Þ
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Fig. 3. Interaction of two particles.
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Now the tangential force is simply

Fs;spring ¼ ðksds12Þ#s12: ð15Þ

The magnitude of the tangential force is limited by a sliding element.
Before starting a comparison the assumption is made that overlaps are very small (D12p1% of

the particle radius) and therefore the angle between the particle’s reference frame and the collision
reference frame, b (Fig. 1), remains negligibly small:

sinðbÞ ¼ b; cosðbÞ ¼ 1: ð16Þ

3.1. Comparing vector components

Taking this assumption into account it is easy to show that the normal component of the
contact-vector (6) equals the overlap between the two particles.

3lx ¼ D12: ð17Þ

Comparing the time derivative of the contact-vector with d ’x12; shows that

’lþ 3eT
’a1R1 sin b1 þ ’a2R2 sin b2

0

" #
¼ �d ’x12: ð18Þ

The minus sign comes from the definition of the contact-vector in Section 2.1 (1 relative to 2)
and the definition of d ’x12 in Section 3.1 (2 ðjÞ relative to 1 ðiÞ). The remaining difference is the
small effect of the particle rotation ð’aÞ on the distance to the centreline ðR sin bÞ of the end points
of the contact-vector. This effect has the same direction as the centreline of the two-particle
system and therefore shows up only in the normal component when projected in Q3: Finally, the
tangential component of the contact-vector is compared with the tangential displacement ds12:

3ly þ
Z t

t0

3lx ’y dt ¼ �ds12ðtÞ: ð19Þ

Here the difference is—again—the minus sign and the contribution of the rotational velocity of
the overlap to the tangential displacement. Whereas the difference in Eq. (15) is negligible, this
should not always be the case for Eq. (16).
These differences need not necessarily be of concern. What is really important is that the forces

used in the equations of motion are exactly the same. So these forces are examined first.

3.2. Comparing forces

Before comparing the respective forces, one must make an important observation:

3ð’lÞ ¼ ’y
0 �1

1 0

" #
3l þ 3 ’l ¼

�’y3ly
’y3lx

" #
þ 3 ’l; ð20Þ

which means that the time derivative of a vector consists of two parts: the derivative of this vector
in its frame and the vector itself times the derivative of that reference frame. This is clearly
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explained in Ref. [3]. Transforming (10) to the present notation would yield

Fn12 ¼ ð�kx
3lx � nx

3ð’lÞxÞ
3ex; ð21Þ

because of the negligible difference in Eq. (15). In combination with Eq. (17) this gives

Fn12 ¼ �ðkx
3lx þ nxð3ly ’y� 3 ’lxÞÞ 3ex; ð22Þ

which—except from the minus sign—shows a clear difference with Eq. (4). When transforming
Eq. (12) in the same way, using Eqs. (11) and (16) one finds

Fs12 ¼ �ks

Z t

t0

ð3 ’ly þ 3lx ’yÞ dt

� �
3ey ð23Þ

or

Fs12 ¼ �ks
3ly þ

Z t

t0

3lx ’y dt

� �
3ey: ð24Þ

Again this equation shows a sign and a non-negligible term as differences with Eq. (4).
Compare both Eqs. (19) and (21) with Eq. (17).

3.3. Different forces in a special case

When imagining a situation as pictured in Fig. 3, where both b1; b2 and the overlap are zero one
finds no differences at all between the two approaches. One also notices that in this situation the
length of the contact-vector is zero, and therefore also all of its components, see Eq. (17). But if
one supposes a non-zero length of the contact-vector, as is the case in Fig. 1, the differences
described above will be found. To find out which approach is the best suited to describe this
situation, the following thought experiment will be conducted. Imagine the unusual situation in
which two identical particles are held in contact by some external force or structure in a fixed
position relative to each other, having a certain overlap and a certain tangential displacement
(Fig. 4). This implies that the interaction forces, projected onto the interaction frame, must also be
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constant over time. Now rotate this system. It is clear that the relative positions of the particles as
seen in the interaction frame still will not change.
Therefore the interaction forces too must remain constant when projected in the interaction

reference frame. When considering Eq. (4) one finds that the overlap and tangential displacement
are both constant, i.e., the time derivatives of the components of 3l are zero. This means that in
this case the components of 3F will be constant. However, when looking at Eq. (21) one finds a
non-zero term in the integral, which—with ongoing time—will give a non-constant 3Fs12: When
keeping the same configuration, but now accelerating the rotation of the system, it is found that
even 3Fn12 is not constant anymore, because of the non-constant rotational velocity in Eq. (19).
These findings are contradictory to the principle that interaction forces should only depend on
relative positions and velocities of the particles in contact. Problems arise from the fact that the
relative velocity at the point of contact can be projected in any reference frame without problems,
this means as long as the two contact-points are on the same spot. But as soon as they separate,
there exists a difference between the projection of the difference of their velocities relative to the
inertial frame (d ’x12 � #n12 or 3ð’lÞ) and the time derivative of the projection of their relative position
vector (3’l), see Eq. (17). The difference one gets equals the distance between the contact points
times the rotational velocity of the system. If one agrees that the motion of the system as a whole
will not influence the interaction of the considered particles, one must choose the latter option to
calculate the interaction forces.

3.4. Importance

Now that a difference has been found to exist one would like to know what is the importance of
this difference in the DEM application. In the standard approach no interaction vector is used
and the tangential force is mostly calculated as an incremental force. This means that an
equivalent multibody approach would always have its contact-vector aligned with the normal axis
of the interaction frame. In that case 3ly is zero and the normal force will not show any difference.
So only the tangential force will show a difference. If this difference is important or not depends
on the ratio of 3lx ’y to 3 ’ly see Eq. (20). When comparing these two variables one finds that

3 ’ly ¼ �’yðR1 þ R2Þ þ ð’a1R1 þ ’a2R2Þ: ð25Þ

Assuming the same rotational velocity for the particles:

3 ’ly ¼ ð’a� ’yÞ � ðR1 þ R2Þ: ð26Þ

When the maximum allowable overlap ð3lxÞ is about 1% of the particle’s radius this means that
’y3lx will only be of importance when the difference between the rotational speeds of the particles
and the interaction system is about this 1%. Therefore it is believed that in most cases this
difference will be negligible. Unfortunately, time has been too short to perform computer
simulations using both methods to quantify this difference.
Finally, other differences could show up when using more complex force models. At the

moment this is not clear yet, but possible differences are expected to be negligible as well.
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4. Boundaries: strange particles?

In this study it is shown that the equations of motion of a particle–fixed wall interaction can be
written as a special case of a particle–particle interaction. Assuming that the strange particle is (1)
at rest at t0; has (2) an infinite radius and (3) a constant density, it is known that this particle has
an infinite inertia and therefore will remain at rest. Further, assuming the position and orientation
of the boundary to be known, it can easily be shown that the contact-vector in this special case
equals the contact-vector for the particle–particle interaction. Indeed, it is shown that interaction
with an infinitely large, non-moving particle leads to a non-rotating interaction reference frame,
which allows one to simplify the contact-vector for this case. Filling in the assumptions then
brings the final conclusion.

4.1. Implementation

The aim in treating boundaries as particles was to allow the construction of a generic program
in which confining geometry with moving parts can be incorporated without difficulty and in
which particles and walls can be treated in a unified way. However, some problems arise when
using this ‘big particle’ approach: some values will become infinite during calculation and other
variables need to be known for confining boundaries than for normal particles. The infinite inertia
in fact prohibits the particles from influencing the boundary’s motion. The code can be written to
handle these infinities, but it will be easier not to calculate the boundary’s equation of motion and
simply externally imposing this motion. This however implies a distinct approach of boundaries
and particles. Also the problem that for particles the centre’s position needs to be known and for
boundaries their edge’s position and orientation, forces one to treat particles and boundaries in a
different way.

5. Simulation results

A simple 2D DEM code has been written to test this new approach. In the simulation circular
particles are running through an inclined tube (Fig. 5). Apart from the problems arising from a
lack of experience with DEM, one major problem showed up in the simulations. As can be seen in
Fig. 3 the overlap between two pairs of particles is far too big. This is due to very large contact
times when particles are rolling on each other: the particles remain in contact and so the end
points of the contact-vector will rotate further away from each other, in the end making the
overlap negative and therefore also the normal force will become negative. This means that
particles will stick to each other and can even rotate inside each other (Fig. 6)!
Of course this is unacceptable. In order to avoid this problem the end points of the contact-

vector would have to be renewed at each time step. This would cancel the advantage of deducing
all forces from one single vector: the tangential force would then have to be calculated as an
incremental force as the tangential component of the contact-vector will be set to zero at each time
step. A lot of DE codes use this method.
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6. Conclusions

The two-dimensional multibody approach has revealed some very small errors in the standard
force equations used in the DEM. The thought experiment conducted showed that in special cases
these errors could lead to significant differences in the calculated forces. In normal cases, however
these differences will be negligible.
Treating boundaries as ‘large particles’ is theoretically possible, but the implementation of this

approach was not possible unless treating these ‘large particles’ in a distinct manner and thus no
advantage could be gained using this approach.
Computer simulations showed some problems with the contact-vector approach. To make it

work properly the end points of the contact-vector should be renewed at each time step, but this
would of course cancel the advantage of deducing all forces from one single vector.
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